Все замкнутые пути в квадрате и в кубе одного вида с точкой, следовательно, куб, квадрат и точка относятся к одному и тому же гомотопическому типу.
В чем смысл гомотопии?
В топологии, разделе математики, две непрерывные функции из одного топологического пространства в другое называются гомотопными (от греческого ὁμός homós «одинаковый, подобный» и τόπος tópos «место»), если быть «непрерывно деформированным» в другой , такая деформация называется гомотопией между двумя функциями.
Что такое гомотопические классы?
гомотопическая теория
геометрическая область называется гомотопическим классом. Множеству всех таких классов можно придать алгебраическую структуру, называемую группой, фундаментальной группой области, структура которой варьируется в зависимости от типа области.
Как найти гомотопию?
Гомотопия из f0 в f1 - это отображение h: X×I → Y (конечно, непрерывное) такое, что h(x, 0)=f0(x) и f(x, 1)=f1(x). Мы говорим, что f0 и f1 гомотопны, и что h гомотопно между ними. Это соотношение обозначается через f0 ≃ f1. Гомотопия - это отношение эквивалентности на отображениях из X в Y.
В чем разница между гомологией и гомотопией?
В терминах топологии|lang=ru разница между гомотопией и гомологией. заключается в том, что гомотопия - это (топология) система групп, связанных с топологическим пространством, а гомология - это (топология) теория, связывающая систему групп с каждым топологическим пространством.